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In the neural network theory content-addressable memories are defined by patterns 
that are attractors of the dynamical rule of the system. This paper develops a 
quantum neural network starting from a classical neural network Hamiltonian 
and using a Schr'Odinger-like equation. It then shows that such a system exhibits 
probabilistic memory storage characteristics analogous to those of the dynamical 
attractors of classical systems. 

1. I N T R O D U C T I O N  

The field of quantum mechanical computing is as yet in its infancy with 
only a few theoretical models and almost no physical hardware to display. 
Despite this, it is the subject of considerable interest due to the necessity of 
understanding computational limits brought on by quantum effects and the 
ever-decreasing size of electronic componentry (Landauer, 1982; Benioff, 
1986; Feynman, 1985; Margolus, 1990). Additionally, there are perhaps les- 
sons to be learned from both a physical and a computational standpoint 
by examining limiting cases of microscopic computing (Feynman, 1982; 
Margolus, 1986). 

In its most general form, computing consists in manipulating information 
in some physically controlled manner. If it is performed by a system obeying 
the laws of  classical physics, such a computation consists in a dynamical 
evolution from an initial to some final, observable state. In von Neumann 
computing this is accomplished through the use of serial logic gates consisting 
of binary elements following a set of  predetermined instructions (an 
algorithm). 

Feynman (1985) produced a theoretical quantum model that could, in 
principle, reproduce serial computation. Feynman noticed that the truth tables 
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of all of the basic logical functions could be reproduced by quantum mechani- 
cal raising and lowering operators acting on up/down spin sites. In particular, 
an operator constructed from the required combination of raising and lowering 
operators (and their adjoints) was found to be Hermitian, permitting its use 
as the Hamiltonian in the Schrrdinger equation. 

The system consisted of a chain of spin sites connected by logic gates 
described by the Hermitian operator. In detail, these operators ensured that 
only one site at a time was operated on in sequence, changing the up/down 
states of the spin sites according to the rules the operators defined. Although 
no suggestion was made as to how to physically implement the site connec- 
tions, at the same time there appeared to be no fundamental reason preventing 
their implementation. The system operated at a regular pace, and produced a 
reliable simulation of classical computation by confining quantum uncertainty 
exclusively to the time domain. In principle, this was a workable serial 
computer developed within the framework of the quantum formalism, evolv- 
ing from an initial state to some measurable final state according to the rules 
of some algorithm. 

Margolus (1990) extended Feynman's model to one that worked as a 
two-dimensional cellular automaton with nearest neighbor updating, showing 
in the process that the original was actually a specific case of this more 
general model. Thus was provided a formal description of parallel quantum 
computation to complement that of serial computation. 

Since both nearest-neighbor automata and neural networks are members 
of the cellular automata family, Margolus' model naturally leads the curious 
to consider the possibility of quantum neural networks. Gerzon (1990), for 
instance, proposed a physical implementation of a rudimentary network. In 
addition, the neurobiologist Bray (1995) noted that while existing neural 
network models are only rough approximations of biological networks, they 
are actually quite good descriptions of protein signaling within cells. Remem- 
bering that proteins are themselves small enough to require consideration of 
quantum effects reveals the possibility of biological quantum computing. 

Even though this remains for the moment conjecture, it is possible in 
the meantime to model systems of automata on computers. Specifically, it 
was shown by Kostin (1993) that cellular automata may be used to model 
both the Schr'odinger and Dirac equations. This affords the possibility of at 
least comparing theory with model experiments until contact with actual 
experiment is made. 

In this spirit, this paper develops a quantum neural network (QNN) 
model. This model is then examined to see if it possesses the most fundamental 
characteristic of classical neural networks--memory storage in attractors. It 
deviates, however, from Feynman's approach of creating from scratch a 
Hamiltonian that mimics classical computation when employed in the Schrrd- 
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inger equation. Instead, the already existing classical Hamiltonian for continu- 
ous-valued neural networks introduced by Ramacher (1993) is used to derive a 
Schr6dinger-like equation. Eschewing the need for exact mimicry of classical 
computation, specific examples of this system are instead compared to analo- 
gous classical examples to see if such systems exhibit analogous memory 
storage capabilities. As well, along the way one eye is kept peeled for results 
of general physical interest. 

Specifically, the classical Hamiltonian used is introduced in Section 2, 
followed by a stability analysis of examples of such a system in Section 3. 
Section 4 then derives the general form of the quantum neural network, 
followed in Section 5 by solutions to the resulting SchrtJdinger-like equation 
for cases equivalent to those in Section 3. 

2. THE CLASSICAL HAMILTONIAN 

In his paper, Ramacher showed that nontrivial nets of continuous-valued 
neurons can be conveniently accommodated in a Hamiltonian framework. 
Since activation and weight dynamics of the nets are derived from a single 
partial differential equation of the Hamilton-Jacobi type, the approach lends 
itself to interesting applications. Of special interest is the case where the 
neural activities alone are dynamical variables and the connection weights 
are fixed parameters. This restricts learning to "off-line" methods, but the 
classical Hamiltonian used is particularly simple and reproduces the structure 
of backpropagation. For the sake of completeness, we summarize below 
Ramacher's approach. 

In a neural network of N units, the activity state of a neuron i at time 
t is denoted by yi(t), with the state of the entire system defined by the N- 
dimensional vector y(t). In its most general form, this state is determined by the 
site-to-site connection strengths w U, the external inputs Yi, and the individual 
thresholds Oi of the neurons. Among the external inputs may be included 
learning inputs or cost functions used to implement various learning schemes. 

For a given set of connection weights defined by the weight vector w, 
the external inputs and thresholds form the boundary conditions for which 
the equations of motion of the system may be integrated. This determines 
the trajectory J(t, y(t)) of some variable of interest in the activity space. 
Compiling the possible trajectories resulting from all of the possible boundary 
conditions forms a surface J(t, y; w) for a particular set of weights (listing 
variables after the semicolon is understood here to denote parameters). These 
surfaces contain information about the dynamics of the network, and satisfy 
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in general a partial differential equation. The latter is restricted heuristically 
to be of the Hamilton-Jacobi form 

OJ 
- -  + h ( t ,  y, A; w)  = 0 (1)  
Ot 

where 

OJ 
A i - (2) 

Oyi 

Since a single surface is defined by a single set of connection weights, it 
thus corresponds to a single possible "lesson" or "memory." The entire family 
of possible surfaces corresponds to the complete possible set of connection 
weights. 

Here, Ramacher chooses for equation (1) a Hamiltonian that is linear 
in the conjugate variable A and has the general form 

N 

h = ~ AjFj(t, y; w) + E(t, y; w) (3) 
j=l 

where E is included as the error or cost function for possible learning schemes. 
Equation (1) leads to the characteristic equations 

dyi 
- -  = Fi (4) 
dt 

dAi _ ~N ~Fj aE :,j (5) 
dt -j~=l Oyi Oyi 

d J _  h + ~ AjFj (6) 
dt j 

Equations (4) describe the activity dynamics of the neurons. They are 
reobtained as a characteristic equation because of the particularly simple 
form of Equation (3). Equation (5) leads to a time-dependent generalization 
of the delta of backpropagation. We follow Ramacher in considering the 
special case of the continuous-valued Hopfield model, where the characteristic 
equations for Yi and Ai become 

, . 

dAi __ 1 Ai __ ~ A j f ] ( y  i -I- ~)i -t- wOyj)wji OYi 
dt h j 
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Here~ is some squashing function and h is the general time constant for the 
neurons. Ramacher studied these equations numerically for their effectiveness 
in time-dependent recurrent backpropagation schemes. In contrast, this paper 
focuses on analytical stability analysis of the equilibria of simple nonlearning 
Hopfield networks. 

3. DYNAMICAL STABILITY ANALYSIS 

The purpose of this paper is to see whether the QNN model possesses 
memory storage characteristics analogous to those of an equivalent classical 
system. The problem is not trivial, in view of the probabilistic nature of 
quantum mechanical predictions. A memory in a classical neural network is 
stored as the location in the activity space of the stability point of a dynamical 
attractor. It is understood that a guarantee of dynamical stability is a prerequi- 
site for a network to be useful as a memory storage device. Further, it has 
been shown (Hopfield, 1982, 1984) that this is provided in both the discrete- 
and continuous-valued Hopfield networks through the use of an energy (or 
Lyapunov) function. This guarantee only holds, however, for networks with 
symmetric (w;j = wji ) connection weights. The introduction of a full range 
of connection weights requires use of dynamical systems theory. To avoid 
unnecessary complication, stability analysis of the dynamics of the continu- 
ous-valued Hopfield network is undertaken for the simplest case. That is, a 
noiseless 2-neuron system (X-Y model) with common gain function and no 
external input. Even as such, approximations must be made; these are repeated 
when the quantum system is analyzed and compared. 

Referring to equation (4), the dynamics of the system is given by 

-ff[ = -Yi  + (9) 

where the time constant "ri has been set to equal 1 and self-connections wii 
to 0. In the interest of further simplicity, the squashing function g (h) to be 
chosen is the Glauber function. Written in full, the differential equations are 

dyi 1 
Fi - d t  Yi + 1 + e-wUY~ (10) 

where if i = 1, then j = 2 and vice versa. This is understood from here on. 
Equations (10) confine yi(t) to an activity space I where 0 -< Yi <- 1. 

Next, the locations of attractors in activity space are defined by the 
locations y* = (y*, y*)  of the equilibrium points where dy/dt = 0. These 
give the transcendental equations 

1 
y* - , (11) 

1 "~ e -wijyj 
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which may only be solved numerically. The curves defined in equations (11) 
intersect only once, always within the I = [0, 1] activity space. Therefore 
the system has exactly one equilibrium point for a particular combination of  
connection weights. 

A map (see Tables (I) and (II)) of the equilibrium points has been 
calculated numerically to illustrate how the location of the equilibrium point 
moves as a function of changes in the connection weights. The main result 
to be noticed is that the location of the equilibrium point moves away from 
the center of  the activity space as the magnitude of the connection weights 
increases. This effect is very nearly linear at the center of the weight space, 
and becomes less pronounced, eventually becoming negligible, as the bound- 
aries of  I are approached. Reintroduction of the sharpness factor 213 merely 
shifts the locations on the map. In other words, dividing the connection 
weights by 213 restores the original map. 

With this map in hand, the equilibrium points may now be categorized 
as either stable (attractors) or unstable (repellors), determining which ones 
may be useful for memory storage. The analysis used to determine which 
equilibrium points are actually stable attractors is conducted using the local 
linearization of the Jacobian matrix A = OFi/Oyjly ~ of the equations of  motion 
in conjunction with the Hartman-Grobman linearization theorem (Tu, 1994). 

The linearization of equations (10) can be defined using the new 
variables ~ = (Yt  - Y * )  and ix = (Y2 - Y~)  as 

(12) 

which is merely a Taylor-series expansion (to first order) about y i*. The ~i 
terms are variations that may be disregarded as small in the neighborhood 
of the point. 

Table I. Map of Stability Points for Full Range of Connection Weights. 

W21 Yl/Y2 

6 .552/.035 .616/.078 .749/.183 .953/.500 .995/.880 .996/.952 .997/.997 
4 .538/.038 .586/.087 .692/.200 .887/.500 .971/.875 .981/.981 .982/.997 
2 .521/.042 .551/.102 .612/.227 .737/.500 .844/.844 .875/.971 .880/.995 
0 .500/.047 .500/.120 .500/.276 .500/.500 .500/.737 .500/.881 .500/.953 

-2  .472/.056 .423/.156 .337/.337 .269/.500 .227/.612 .200/.672 .183/.749 
-4  .430/.070 .260/.260 .156/.423 .120/.500 �9 102/.551 .087/.586 .078/.616 
-6  .216/.216 .070/.430 .056/.472 .045/.511 .042/.521 .038/.538 .035/.552 

-6  -4  -2  0 2 4 6 WI2 



Quantum Neural Network 2861 

vl 

Vl 

T 
L~ 

.=_ 
0 

,q. ,q. ~ 

I 

s Q @T 

8 

O 

O 

O 



2862 Bonnell and Papini 

Putting the Jacobian A into equation (12), and remembering that ~ = 3~ 
and iX = 3~2, we obtain the linearized equations of motion 

wije - wljyj 
Yi = --Yi  + Yi* + (1 + e-wijy~)2 (YJ -- Y~') + ~ i  (13) 

The key to analyzing the stability of the equilibrium points is a set of rules 
based on the form of the eigenvalues of the local Jacobian matrix (Tu, 1994). 
For present purposes, these rules require that for a stable attractor, the real 
part of each eigenvalue be negative, or else the equilibrium is unstable. 

If the Jacobian matrix for the 2-neuron system is written in the form 

( '  .4, A =  F1 

then the eigenvalues are 

~kl,2 = - 1  _+ F,C/-F-~IF~ (15) 

From the guidelines listed above, it is apparent that the system under consider- 
ation has a stable attractor for all cases, unless FtF2 > 1. Evaluating the 
eigenvalues of the map of equilibrium points (Tables I and II), the result is 
that only systems with highly inhibitory weights (both wij's < - 6  or so) 
violate the stability condition. It is important to notice that since two-dimen- 
sional systems cannot exhibit chaos and trajectories cannot cross, it is reason- 
able to presume that, for this case, local stability implies global stability. Of 
importance as well is that almost the entire activity space is available for 
memory storage. 

A further approximation may be introduced, using the original equilib- 
rium locations shown in Table I. If in equations (10), the y/terms in the g (h) 
are replaced by y ~', the equilibrium point remains the same (memories have 
the same location), but the Jacobian matrix is now simply 

A = [ O  1 -10] (16) 

for all cases. The eigenvalues are now simply •1,2 ~--- - -1 ,  which guarantees 
stability, and a straight-line trajectory to the equilibrium point. This is there- 
fore a valid approximation only of systems originally exhibiting a stable 
equilibrium. 

With this information now in hand, the stage is set to proceed with the 
development and analysis of the QNN model. 
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4. C O N S T R U C T I N G  THE Q U A N T U M  N E U R A L  N E T W O R K  

It is assumed here that the usual framework of quantum mechanics 
remains valid even in the nonlinear case, as supported by available experimen- 
tal evidence. A quantum Hamiltonian is therefore assigned to the known 
classical process by means of the usual formal replacements O/Ot ---> icx O/Ot, 
Ai ---> -ict  O/~Yi (where ct plays the role of Planck's constant in the activity 
space) in equations (1)-(3), and by writing the product AjFj as 1/2 (AjFj + 
FjAj) (Schiff, 1968). One obtains the Schr'6dinger-like equation 

+ - + E .  (17 )  icx --~- = [ 2 j Fjr 0)9] "-2~j Jcgyj 
where ~ = ~(t, y) is the wave function of the quantum neural net. By using 
the commutation relations 

~yj 0 _ OF, 
F,(y) - Fi(y) 39 Oyj 

one further obtains 

( ict ) ic~ 0xIt0t = F -  (-iCtVy) - ~- Vy- F + E * (18) 

These equations define a general quantum mechanical network with activity 
dynamics, potential, external inputs, and thresholds. The activities are now 
Hermitian operators producing a "wave function" in some Hilbert space. The 
time derivative of these activity operators is thus 

- -  : - -  OYi dyj i [H, 8] + - -  (19) 
dt ~ Ot 

Using the Hamiltonian of equation (18), this commutator is 

[H, yj] = -icx Fj (20) 

Therefore, presuming the neural activities to be time-independent, the 
"velocity" of the activity operators is simply 

dyj 
= Fj (21) 

This is exactly the same as for the variables of the classical system. The 
physical content of equation (18) obviously exceeds that of equations (1)-(3). 
This can be seen by splitting equation (18) into its real and imaginary parts. 
By writing *(t ,  y) = A (t, y) exp(-iota' (t, y)), where A and J are real functions, 
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and substituting into equation (18), one obtains equation (1) from the real 
part and 

~j OA I ~j OFJ A OA + F j . -  + - = 0 (22) 
at . 039 2 .039 

from the imaginary part. By multiplying equation (22) by A, one arrives at 
the equation 

OA----~20t + ~j. ~yj (A 2Fj) = 0 (23) 

which, because of equation (21) and the relation A 2 = l~l 2, expresses the 
conservation of probability of finding the system in a bounded region of 
activity space. The probability interpretation of �9 is possible only if equation 
(23) is satisfied (Schiff, 1968). This justifies a posteriori the quantization 
procedure followed. It must now be determined whether the probability 
distribution resulting from equation (18) is in some way capable of storing 
a memory in a manner analogous to the classical model. 

5. WAVE FUNCTION FOR THE QNN 

This section provides approximate solutions to equation (18) for a 2- 
neuron system equivalent to the X-Y models of Section 3. These are for the 
cases of symmetric weights of arbitrary magnitude, and of small-magnitude 
nonsymmetric weights, respectively. The form of the resulting probability 
distributions is then examined to determine how observable memories may 
be stored in such systems. These solutions may be extended to N-neuron 
systems without alteration in principle. Specifically, Section 5.1 uses the 
standard linearization of Section 3 to illustrate the similarity between the 
classical stability criteria and the requirement for probabilistic memory stor- 
age. The "small-weights" approximation of Section 3 is then employed in 
Section 5.2 to provide a simpler wave function, which is subsequently normal- 
ized in Section 5.3. 

In the classical X-Y models, neither E nor F in equation (18) are explicit 
functions of time, therefore the spatial wave function ~(y)  obeys the energy 
eigenvalue equation 

Ht~ = ~J (24) 

where e plays the role of an energy, and the complete solution is presumed 
to be 

~(y, t) = ~(y)exp - (25) 
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Equation (24) may then be written as 

( io ) 
- /r  �9 Vy - ~-  Vy �9 F + E ~ = e~b (26) 

by using equation (18). 
To render this equivalent to the classical X-Y model, the potential E is 

set to 0 and Fi is again equation (10). It is easily checked that this Hamiltonian 
is Hermitian. Equation (26) becomes 

- i a  F, Oy, ~ = e + -2 kay, + 2y2]J (27) 

Evaluation of the derivatives on the right-hand side leaves simply 

F, fl--~--@ + F2 O__~_~ = ,y, (28) 
Oyl Oy2 

where ~/ = 1 + ida .  
Here Lagrange's method of characteristics (Duffy, 1986) may be used 

to reduce equation (28) to the system of ordinary differential equations 

dyl - @2 _ d~ 
(29) 

Fl F2 ~/~ 

These equations, with F; given by equation (27), do not appear to be integrable 
and require approximations for their solution. 

5.1 Symmetr i c  Connec t ion  Weights 

To begin, the first of equations (29) in parametric form yields equations 
(10) again. It may also be written as 

@1 - Y l  + 1/[1 + exp(-w21Y2)] 
- ( 3 0 )  

dy2 -Y2 + 1/[1 + exp(-w21y0] 

and the linearization approximation used in equation (12) for the dynamical 
stability analysis of the classical system again applies. Using the definition 
[equation (14)] of Fi and Ay/= Yi - Y~, this can be written compactly as 

F i = - A y  i Jr riAyj (31) 

Equation (30) is then 

dy dy2 
--Ayl + FlAy2 -Ay2 + F2Ayl (32) 
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with the approximation presumed as before to be most valid in the neighbor- 
hood of the singularity. Likewise, the activity operators remain confined to 
/. Equation (32) may be integrated exactly only if F~ = F2 -- F. This is 
regrettable, but merely returns us to the old restriction of symmetric weights. 
Using multipliers, we find that equation (32) gives 

d(Ayl + Ay2) _ d(ayl - Ay2) 
(33) 

Ayl + ay2 ayl -- Ay2 

or, after integration, 

Ayi + AyE (34) 
C1 = A y l - A y 2  

Next, equating the right-hand term of equation (29) with the left-hand 
term in equation (33) gives 

d(Ay~ + Ay2) _ d0 (35) 
Ay I -t- Ay2 ~/* 

and upon integration 

q, 
C 2 = lAy 1 + Ay21v/(r_l) (36) 

The solution therefore consists of an arbitrary function of the form 

�9 (C~, C2) -- 0 (37) 

The specific solution to the problem is now found using the input location 
of an initial wave function described in terms of a reference curve (Duffy, 
1986). In this case it is presumed to take the form of a Gaussian centered 
on the point (y~, y~): 

t~o(yl, y 2 ) = A  e x p { _ ~  2 [ ( y l _ y ~ ) 2 + ( y 2 _  y~)2]} (38) 

where A is the amplitude, and 1/(40 "2) is the "sharpness" of the distribution, 
presumed to be chosen sharp enough that ~o _ 0 at the boundaries of I. This 
is an attempt to mimic the initial starting point for classical trajectories in a 
quantum system. The base curve is chosen to be 

y~ = y~ (39) 

and so, along this curve equation (34) is 

Ay~ + Ay 2 (40) 
Cl = Ay~ - Ay 2 
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where Ay~ = y~ - y*. Solving for Y2 gives 

+,~ o{C~ + 1~ 
Y2 = - Y l k ~ )  + Y~' (41) 

Here '+ '  corresponds to when the top and bottom arguments of equation 
(40) have the same sign, and the ' - '  is used for the case of opposite signs. 
This convention is to be understood from here on. 

Together with equations (40) and (41), equation (38) becomes 

0o a xp{ �9 ---ayl~c---~_ 1) - Ay~] } (42) 

Next, remembering Equation (36), we know 

t~ = ~~ IAy~ + Ay21 -~/(r-1) 
lay1 + Ay21 -~/(r-1) (43) 

Together with equation (42), this gives 

{ ~_~2 I [C1 + 1~ ]2} IAy~ + Ay21-~'(r-I)IAyl + Ay21 -~/(r-1) t~ = a e x p  - + _ - A y ~ \ ~ } -  Ay~ 

(44) 

Finally, to provide a function valid for the entire activity space, the constant 
CI must be replaced with its original definition [equation (34)]. The result is 

[ ~-~2( I ( A y , + A y 2 ) I ( A y , - A y 2 ) I + I  )~] 
= A exp - ___Ay~ I(Ayl + Ayz)I(Ayl - Ay2)I - 1 - Ay~ 

IAy~ + Ay21 "#(r-l) 
• lay1 + Ay21 -'1/(r-1) (45) 

and the probability density becomes 

laltl 2 = ~11" 

[ - 1 (  I(Ayl + Ayz)l(Ayl - Ay2)l + 1 )~'] 
= A 2 exp ~ • I(Ayl + Ay2)I(Ayl Ay2)l -- 1 - Ay~ 

Ay~ + Ay2-2J(r-,) 
x Ay~ + ~ (46) 

Equation (45) is a solution to equation (18). It has been found without the 
use of confining boundaries, and is similar to that for a free particle in that 
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the energy �9 is arbitrary. However, the dynamics of the system restricts the 
wave function entirely to the interior of L The wave function oscillates in 
time according to equation (25), but the probability density (and thus the 
time-averaged values of observables) is time-independent. 

The main difference between the classical and quantum X-Y models is 
the following. Memory is defined as the location of a final resting place of 
a trajectory in the classical model, while in the quantum system it is defined 
by the probability peak in the neighborhood of the same singular point. It is 
interesting to note that the observation of the memories in both instances is not 
instantaneous--the classical system approaches zero velocity exponentially, 
while the quantum system requires a sufficient number of measurements to 
obtain an accurate average value. 

It must be remembered that equation (45) represents an approximate 
solution. By its nature, the probability density is not symmetric about the 
singular point, but further asymmetry is introduced with equations (39) (for 
instance, everything may be rewritten 1 ~, 2). 

The right-hand term in equation (46) that is dominant in determining 
the location of the probability peak only acts in this way if F < 1. This is 
exactly the same condition that characterizes the stability of the attractor in 
the classical model. If F > l, the sign of the exponent changes, giving a 
near-zero probability around the singular point, which increases with distance 
from it. In this case, however, the system actually contains the same amount 
of information. The F - 1 case in this instance may simply exhibit a memory 
defined by the location of minimum probability. 

Finally, since for most cases F < 1, the approximation used does not 
seem unreasonable. For locations in the activity space far away from the 
singular point, the probability densities are made small because of the decreas- 
ing exponential factor, which minimizes the distorting effects of the lineariza- 
tion at distances far from the singular point. 

5.2. Small-Weights Approximation 

The previous section provides a solution that, as is often the case, is 
restricted to symmetric connection weights. Once more using the further 
approximation 

Fi = - Y i  + Y,~ (47) 

allows analysis of a small range of nonsymmetric weights. This provides 
exactly the correct singular point, and for small connection weights distorts 
the wave function (and probability density) only slightly. How little depends 
on the size of error considered desirable. Here it is taken to mean approxi- 
mately that Iwifl < 0.1. Equation (32) becomes 
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dyl _ dy2 _ d ~  

-Yl + Y* --Y2 + Y~' ~/t~ 
(48) 

The method used in the previous section applied to the left-hand equation 
yields 

C1 = Ayl (49) 

From equation (29) it also follows that 

from which one obtains 

dy, _ d~ 
- -  (50) 
Yl - Y* 

(?2 = t~-llAyll -~ (51) 

The solution to equation (18) is then of the form 

qb( A~121, * - q A y , ' - ' )  = 0 (52) 

which, as in the previous section, is specified by the base curve and initial 
Gaussian. Using the base curve in equation (39) gives 

ay2 
C1 = Ay~ (53) 

Solving for Y2, one obtains 

Y2 = C~lAy~l + y* (Y2 > Y*) (54) 

o r  

Y2 = -CllAy~l + y* (Y2 < Y*) 

Substitution of these equations into equation (38) gives 

@ ~  e x p { - ~ a  2 [• -- Aye]Z}; (+): y z > y ~ ,  

Use of equations (51) and (39) produces 

= ~o IAY~ I~ 
IAyl I ~ 

(55) 

(-) :  Y2 < y~' 

(56) 

(57) 
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and by putting equation (56) into equation (57) one obtains 

~ = A  e x p { - ~  2 [-+CllAy~l- y~]2} IAy~IV 
IAyl I v ' 

( + ) :  Y2 > Y~, ( - ) :  Y2 < Y$ (58) 

Finally, elimination of C~ gives a solution for the entire activity space 

t~ = A exp - \ ~ Ay~ IAy~l' (59) 

and the probability density is 

(Ay21Ay ~1 2 m 02 

This probability density produces the same characteristics as the solution of 
the previous section, except that the peaking of the probability is even less 
symmetric, due to the asymmetric solution procedure. Also, the F - 1 term 
in the exponent has disappeared, forcing one to ensure that this approximation 
is only applied to systems with "peaks" in the probability density, just as the 
classical case only allows this approximation to qualitatively describe stable 
systems (see Section 3). However, this should not be a problem, because for 
small weights, F < 1 for all cases. 

The advantage of this approximation is that it allows a small range of 
nonsymmetric connection weights to be described. Additionally, it appears 
simple enough to proceed with a formal normalization procedure. 

5.3 Normalization of the Small-Weights Model 

To find an explicit expression for A in equation (59), the condition that 
total probability sums to unity must be used. That is, 

Iqt21 = tln~* dyl dy2 = 1 (61) 

must be solved for A in full. Equation (61) is 

I--= dyl@2A2 exp ~ (Y2-Y*)  - A y ~  
Yl -- Yl 

(62) 

Since it has already been presumed that o" is very small, an approximate 
result for equation (62) is most easily obtained by treating the "sharp" 
Gaussian term as a Dirac g-function. That is (Korn and Kom, 1961, p. 878) 
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lim 1 ( ~ 2  ) = ~ J ' ( x ) ~  (63) e x p  - (x )2  

which automatically ensures that A1 and A2 are Hermitian operators in this 
case and in that of Section 5.2. Using the identity (Gel'Fand and Shilov, 1964) 

~(P) ~(Q) (64) B(pQ) = ~ + p 

we can write equation (62) 

I a2,/~Crfo'lAy~ Ira ( . o l Y l - - Y * ~  : ayly~_y~ dy2g y 2 - Y ~ - a y 2 ~ )  

(65) 

where the limit cr -4 0 is henceforth understood. For the integral over Y2 to 
be nonvanishing, the condition 

. olYl - Y*I 
0 < y2 = y* -/Ay2 T < 1 (66) 

must hold. This means that the range of the Yn terms in the left-hand integrand 
is now 

+lAy~l +lAy~l 
- Ay~ (y~' - 1) + yl* x y l  x _ Ay~ y~' + y~' (67)  

where the top signs correspond to the case where Ay~ > 0, and the bottom 
signs correspond to the case for which Ay~ < 0. The simplest case occurs 
(for Ayl > 0) if 

IAy~l 
y* + (y* - 1) < 0 (68) Ay~ 

and 

~ay~l 
- - y *  + y * >  1 (69) 
Ay~ 

which leaves the limits of integration over Yl as originally specified. Since 
the purpose here is to derive the normalization condition analytically, this 
condition is presumed from here on. Then integration over Y2 in equation 
(65) gives 
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I = A 2 , ~ c r  dyn (70) 

The integral over Yl has a singularity at Yl = Y ~- This is dealt with by 
means of a limiting cutoff -q around the singular point, resulting in 

I =  trA2x/~lAy~l In( .y~(I - y*))  (71) 

Finally, since I -- 1, 

A = (cr,,/~lAy~l)In ~ (72) 

From here on, ~ is also understood to be evaluated in the limit 
approaching zero. 

Since • ~ 0 is an approximation used only for mathematical conve- 
nience, it is presumed that the limit ~ --* 0 takes precedence. This results 
in A being a vanishingly small positive quantity--a result of normalizing 
probability in the neighborhood of the singularity. 

A useful example illustrating the procedure used in the analysis of the 
model is to see if the expectation values resulting from this normalization 
procedure agree reasonably well with the probability peak [equation (60)]. 
The simplest case is that of (Y2), which is given by 

I0f2 (Y2) = OY20* dyl dy2 (73) 

Using the same approximations and conditions as above, one obtains 

(y2)=A2, , /~ty lAy ~ly*[ln(-Y ~'(1 - Y ~)) + Aye] (74) 

Equations (72) and (74) yield 

(Y2) = Y~ + A 2 x / ~ A Y ~  (75) 

and since the right-hand term vanishes in the limit "q --> 0, we have 

(Y2) = Y* (76) 

Next, consider the case of (Yl) given by 

I fo (Yl) = q/ylt~*dyl dy2 (77) 
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The same approximations and conditions lead to 

f l  Ay~ (y,) = A 2v/-~a y, ~ dy, 

Using the identity (Korn and Korn; 1961, p. 928) 

I dx ~ - x b ln(ax + b) 
a x + b  a a 2 

integration of equation (78) gives 

(78) 

(79) 

(80) 

Equation (72) again gives 

(Yl) = Y* (81) 

in the limit -q ~ 0. The expectation values of the activities are therefore the 
singular point values in the above limit. 

As a further check, the expectation value of the Hamiltonian is calculated. 
If this is written using equation (31), then 

H = --iaFl ~Oyl -- iotF2 0~2 + iet (82) 

Then, operating with equation (82) on equation (59) produces 

H~ = eO (83) 

which is exactly equation (24). This means that 

t~*n 0 = el,l  2 (84) 

Integrating over all space, one obtains 

(H) = e (85) 

as expected. 

6. S U M M A R Y  

The approximate solutions to the QNN model discussed above indicate 
that the network is capable of storing a measurable memory in a manner 
different than, but equivalent to that of the classical system. This memory is 
connected to the "wavefunction" by the probability distribution Idol 2 which 
is peaked at the singularity (in F) in the Schrrdinger equation. In full analogy 
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with the classical system, this singularity occurs at the same location in the 
activity space as the resting point of the classical dynamical trajectory, and 
is analyzed using the same linearization procedure. Further, the condition 
that ensures that the probability is peaked at this point is exactly the same 
as the classical condition that defines a stable attractor, hence ensuring reliabil- 
ity in both systems. 

An additional similarity is that a certain measurement time is required 
to gain a precise value for the location of the attractor. In the classical system 
this consists of waiting for the motion of the pseudo "particle" to exponentially 
slow to the point where it can reasonably be considered to have stopped. 
Likewise, the quantum system requires a sufficient amount of time to perform 
enough measurements to determine the average probability distribution. 

A couple of final practical points should be mentioned. First, it must 
be remembered that the wave function is only approximately correct--the 
initial Gaussian is presumed to be very sharp for mathematical convenience. 
Second, the equivalent of Planck's constant et remains arbitrary in the model 
and thus retains this alternate label instead of the customary h. As well, as 
in Feynman's model there is no specific suggestion as to how one might 
physically implement the activity operators and their connections. However, 
despite the current lack of available physical experiment, the system is in 
the meanwhile generally amenable to computer modeling, as well as being 
a useful starting point for understanding physical systems where ct ~ h. 
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